How GNSS and Beacon receivers can be used to monitor auroral ionosphere and space weather?

Kirsti Kauristie, Finnish Meteorological Institute

Special Thanks: J. Norberg (FMI), A. Aikio and T. Nygren (University of Oulu)

- Space weather: What and why?
- Some ionospheric physics
- Probing ionosphere with Global Naviation Satellite System
- Why GNSS is not enough at high latitudes?
- Future prospects

The impact of Solar eruption in the near-Earth space

Animation: NASA

Space weather has two faces

- Solar eruptions cause rapid variations in the magnetospheric and ionospheric conditions
- Geomagnetic field guides processes particularly to the vicinity of magnetic poles
- Manifestations:
 - Beautiful auroras
 - Potential problems in technology on ground and in space

Photo: Jouni Jussila

Space weather: Societal impact

•Plot: https://fi.wikipedia.org/wiki/Aalto

•Animation:

https://commons.wikimedia.org/wiki/File:AC_wave_Positive_direction.gif#/media/File:AC_wave_Positive_direction.gif

Electromagnetic waves

•Plane wave, linear polarization

- •Homogeneous medium
- •E= Electric field, H= magnetic field, v=propagation direction
- Behaves according to the Maxwell equations
- Figure: Wikipedia "Electromagnetic radiation"

26.5.2016

The Maxwell equations

$$\nabla \cdot \boldsymbol{E} = \frac{\rho}{\varepsilon}
 \cdot \nabla \cdot \boldsymbol{B} = 0
 \cdot \nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}
 \cdot \nabla \times \boldsymbol{B} = \mu \boldsymbol{j} + \frac{1}{\mu \varepsilon} \frac{\partial \boldsymbol{E}}{\partial t}$$

ρ= charge density
J= current density
B=Magnetic field
E=Electrid field
μ=permeability
ε=permittivity *∇*· = divergence *∇*×= curl

James Clerk Maxwell Scottish mathematician 1831-1879

Plasma and its waves

•Maxwell: Electric and magnetic fields, charges and currents are coupled with each other

•**Plasma:** dilute gas with charged particles where the above described coupling is exceptionally pronounced.

• Disturbances in plasma can grow rapidly and they often appear as waves.

•Plasma is the dominant state of matter in the space.

• In the ionosphere plasma is mixed with the neutral atmosphere which makes its modelling challenging

Fig. 4.1. Range–time–intensity map displaying the backscatter power at 3-m wavelengths measured at Jicamarca, Peru. The gray scale is decibels above the thermal noise level. [After Kelley *et al.* (1981). Reproduced with permission of the American Geophysical Union.]

The structure of ionosphere

Three layers: F, E, D Variations in the electron density

Day-night variations: 100x
Variations according to the solar cycle: 10x in upper parts of F-layer
Auroras: 100x variability in E-layer

Factors controlling ionospheric electron density

Dense GNSS receiver networks are widely used in ionospheric research

 $\,$ From the combination of L1 and L2 signals integrated electron density (N_e) along the signal path can be deduced

Near-Real-time data available from several networks
 → Suitable approach also for operational services

 Works well particularly at low and middle latitudes and in global scales

FINNISH METEOROLOGICAL INSTITUTE

Challenges in the Arctic ionosphere

at

-Auroral activity causes dynamic small scale structures in the ionosphere \rightarrow high space and time resolution needed

 GNSS signals available only at low elevation angles → less information from the regions where the disturbances are strongest

TomoScand – IONOSPHERIC TOMOGRAPHY

3D reconstruction for ionospheric electron density (Ne) over Fennoscandia Spatial resolution 5-20 km (typically ~100 km in global inversions)

only ~4 times per day

UNIVERSIT

TomoScand approach – pros and cons

Challenges

•Signal paths do not cover all directions \rightarrow support from other instrumentation needed

 Availability of Beacon transmissions in the future?

Advantages

High space resolution

 Understandable regularization of the ill-posed problem

•Systematic error estimates

Figures: J. Norberg; Syntech Microwave; IBIMAGEM

 Cheap technology, tested already in CubeSats

Support to TomoScand by ionosondes

•HF radio waves reflect from the ionosphere

Ionosfääric refractive index:

•n²=1- $\left(\frac{2\pi f_p}{2\pi f}\right)^2$

•N_e=10¹⁰-10¹² m⁻³ \rightarrow 1-8 MHz

 Ionosonde provides altitude profile of eletron density up to the F-layer maximum.

$$f_p = \frac{1}{2\pi} \left(\frac{e^2 n_e}{\epsilon_0 m_e}\right)^{1/2} = \left(80 \frac{n_e}{\mathrm{m}^{-3}}\right)^{1/2} \mathrm{Hz}$$

Figure: www-amateur-radio-wiki.net

INNISH METEOROLOGICAL INSTITUTE

Validation with high power radars

Why is this important?

 Over the horizon communication with HF radio waves is used in arctic shipping and in aviation on polar routes

• HF reflection conditions depend critically on ionospheric electron density conditions

 \bullet Global warming opens new routes for artic shipping \rightarrow significant reductions in time and costs

Figures: Wikipedia United Airlines The Arctic Institute

Thanks for your attention!